
Suprising application of the maximum modulus principle, related to section 5.2 and the
hyperbolic plane in geometry.  This also yields a different proof of the Poisson integral 
formula for harmonic functions than the text's, in the current section 2.5, which I may 
show you later.

Question.  Consider D = D 0; 1 .  What are all possible invertible conformal 
transformations f : D

_
D
_

 ?  In other words, so that f, f 1  are each analytic bijections 
of the closed unit disk.

Step 1  What if we require f 0 = 0?  Then consider 

h z =
f z

z
z 0

f 0 z = 0
Since h is analytic in D

_
 except at the point z = 0 where it is continuous, the modified 

rectangle lemma and Morera's Theorem prove that h is analytic in the closed disk (i.e. in

a slightly larger open disk).  The same reasoning applies to 1
h z

.    Use the maximum 

modulus principle for h z  and for 1
h z

 to show that f z = ei z are the only 

conformal diffeomorphisms in this case.  Not very many!!!
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Step 2  For z0 D 0; 1 , consider the Mobius transformation (see p. 340, Chapter 5.2; 
also a first-week homework problem):

a)  g z
z0 z

1  z0
_

 z .

Show g z  is conformal in the closed unit disk:  g z =
1 z0

2

1  z0
_

z 2  exists and is non 

zero in the closed unit disk.
Notice that g 0 = z0 .  Show that g transforms the unit circle to the unit circle, so that 
by the maximum modulus principle, g z 1 z D 0; 1 .

b)  Denote the Mobius transform g in part (a) by gz
0

 because the image of the origin is 

z0 .  Solve the equation 
z0  z

1  z0
_

 z = w

for w to see that the inverse function to gz
0

z  is given by the related Mobius 

transformation 

g z
0

w =
z0 w

1  z0
_

w
.

Combining (a), (b) we see that the gz
0

z  are conformal diffeomorphisms of the unit 

disk.
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Here's a Maple picture of how g.5 z  transforms circles concentric to the origin, and 
rays through the origin.  You'll notice that the images of the circles are circles, and the 
images of the rays are circles (or rays) that hit the unit circle orthogonally.  This is not 
an accident.  It turns out that these Mobius transformations gz

0
are the isometries of the

hyperbolic disk, in hypberbolic geometry.  (Another circle of ideas for a potential class 
project.)  Notice that g.5 0 = .5.  Its inverse function is g .5 z  which maps .5 back to
the origin, and maps the origin to .5!

to be continued
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Step 3:  Combine steps 1 and 2, to show that for z0 D 0; 1  every conformal 
diffeomorphism of the unit disk with 

f 0 = z0
can be written as

f z = gz0
ei z

for some choice of  and the Mobius transformations gz
0

z  with z0 D 0; 1 , from 

the previous page,

gz
0

z
z0 z

1  z0
_

 z
.

Not very many!
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Math 4200-001
Week 8 concepts and homework

2.4-2.5
Due Friday October 23 at 11:59 p.m.

2.5     2, 5, 7, 8, 10, 15, 18. 
3.1     6, 7.  (To get you thinking about sequences and series, for Chapter 3.)



Math 4200
Wednesday October 21
2.5  discuss conformal diffeomorphisms of the disk via the maximum modulus principle,
in Monday's notes, and the Poisson integral formula for harmonic functions in the disk, 
in today's notes.  On Friday we will begin Chapter 3 about series representations of 
analytic functions.

Announcements:   Quiz today!

Warm-up exercise:



Application to harmonic function theory (in partial differential equations).  There is an 
analog of the Cauchy integral formula for harmonic functions, that expresses the value 
of a harmonic function inside a domain in terms of an integral over the boundary which 
uses the harmonic function's boundary values.  It's much messier to write down than the 
Cauchy integral formula in general -  if you wanted to take the real part of the Cauchy 
integral formula you'd also need to know the boundary values of the conjugate to the 
harmonic function, to deduce the values of the harmonic function in the interior, so you 
can't just use the CIF, like we did for the mean value property.   In the case where the 
domain is the unit disk (or a scaled disk), this analog to the CIF is known as the Poisson 
integral formula and we can prove it via the mean value property and Mobius 
transformations.

Theorem  (Poisson integral formula for the unit disk)  Let 
u C2 D 0; 1  C D

_
0; 1 , and let u be harmonic in D 0; 1 .  Then the Poisson 

integral formula recovers the values of u inside the disk, from the boundary values.  It 
may be expressed equivalently in complex form or real form.  For 
z0 = x0  i y0 = r ei  with z0 1,

u z0 = 1
2 

0

2 
1 z0

2

z0 ei 2  u ei d

u r cos , r sin = 1
2 

0

1 r2

r2 2 r cos 1
u cos , sin  d

  First, check why the CIF formula wouldn't work directly (except for u 0 )  unless 
we knew the harmonic conjugate.
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 But we do know the mean value property, and we can combine this with the Mobius
transformations in yesterday's notes!  (Actually we only know the mean value property 
if u is harmonic on a slightly larger disk than D 0; 1 , but it also holds for harmonic 
u C2 D 0; 1  C D

_
0; 1 , by a rescaling, limiting process. ) In any case, 

consider the Mobius transformation

gz
0

z =
z0 z

1 z0
_

 z
Then u gz

0
z  is harmonic on the unit disk (do you remember why, from a Chapter 1

homework problem?).  So by the mean value property for the composition,

u z0 = u gz
0

0 = 1
2 

0

2 

 u gz
0

ei d

Now we just change variables, and after some computations out pops the Poisson 
integral formula!  Consider  as a function of  on the unit circle via

gz
0

ei = ei 

g z
0

ei = ei 

So, 

u z0 = 1
2 

0

2 

 u gz
0

ei d  

= 1
2 

0

2 

u ei  d .

To get  we differentiate e.g. the second change of variables formula,  using the 
chain rule for curves and regular Calculus

d
d

g z
0

ei = d
d

ei 

g z
0

ei i ei = i ei  .

From yesterday's notes, g z0
z =

1 z0
2

1 z0
_

 z 2  so the identity above for  reads

1 z0
2

1 z0
_

 ei 2  i ei = i 
z0 ei 

1 z0
_

 ei 
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so  (repeating some equations on this page hoping for lecture clarity):

u z0 = 1
2 

0

2 

 u gz0
ei d  

gz0
ei = ei ,    g z0

ei = ei 

u z0 = 1
2 

0

2 

u ei  d

where satisfies the identity

1 z0
2

1 z0
_

 ei 2  i ei = i 
z0 ei 

1 z0
_

 ei 
 

1 z0
2

1 z0
_

 ei 
 ei 

z0 ei 
=  

1 z0
2

1 z0
_

 ei 1 z0e i 
=  

u z0 = 1
2 

0

2 
1 z0

2

z0 ei 2  u ei d  !

QED!!



Harmonic functions exist and are uniquely determined by their boundary values - we 
know that from the maximum principle for continous boundary values, and it's even true
if the boundary values are only piecewise continuous....in the disk the harmonic 
functions can be expressed using Fourier series, or with the Poisson integral formula we 
just proved, and as we've mentioned, they describe various physical phenomena, such as 
equilibrium temperature distributions in 2-dimensional plates having controlled 
boundary temperatures....also related to random walk phenomena in probability, other 
applications.

http://mathfaculty.fullerton.edu/mathews/c2003/DirichletProblemDiskMod.html


